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Context

centered on environmental monitoring

Air pollution remains an issue⇒ ≈ 400.000 premature deaths per year in EU

Need to monitor air quality

!!! Local effects not sensed and hard to model with a sparsely distributed sensor

network

Tremendous development of miniaturized sensors

Allow a much denser deployment than authoritative sensing stations

î Some local effects become observable

!!! But sensor drift is an issue
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The why of sensor calibration

Observed phenomenon î voltage

Voltage î Physical value?
I Sensor calibration cannot be

performed in lab
î Data-driven approaches (a.k.a. in situ

calibration techniques)
I Presence of reference data
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The how of sensor calibration
Many existing methods (see, e.g., Maag et al. 2019, Delaine et al. 2020)

I network topology
F Mobile vs fixed sensors
F Single sensor vs multiple sensors

I calibration model
F linear vs nonlinear
F single vs multiple latent variables

I calibration strategy
F Macro vs Micro-calibration, etc

Dorffer et al., 2015–2018: An original strategy
Combine micro-calibration and macro-calibration

î Highlighted as a promosing idea in (Maag et al., 2019)

Revisit mobile sensor calibration as an informed matrix factorization problem
4 Well-suited for much less dense networks (much less rendezvous needed)

4 Linear and nonlinear calibration models

4 Joint sensor calibration and physical phenomenon map

6 Limited to the calibration of a single sensor in sensing devices covering a small area
over a short period
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The Big Picture
Random Projections

Compress Weighted NMF

Fastening Weighted NMF

affine response
x = h0 + h1 · w1

Sensor model

structure W

reference data

informs W et H

Informing WNMF

Fast Informed Weighted NMF
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Part I: Revisiting in-situ calibration as an informed (semi-)NMF problem

Random Projections

Compress Weighted NMF

Fastening Weighted NMF

affine response
x = h0 + h1 · w1

Sensor model

structure W

reference data

informs W et H

Informing WNMF

Fast Informed Weighted NMF

1 Calibration of homogeneous sensors

2 Extension to p Heterogeneous sensors

3 A simple extension to T Scenes
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Definitions

A rendezvous is a temporal and spatial vicinity between two sensors (Saukh et al.,

2013).

A scene S is a discretized area observed during a time interval [t, t+∆t). A

spatial pixel has a size lower than ∆d, where ∆t and ∆d define the vicinity of the

rendezvous (Dorffer et al., 2018).

Sensor 1

Sensor 2

Sensor 3

Rendezvous

Scene S

stacking

Column

Observed matrix X

Sensors

Spatial
samples
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Assumptions & Problem Formalism (1)

Sensor response (calibration function H(.) of Sensor j)

x(i, j)︸ ︷︷ ︸
sensor-output voltage

' Hj(w1(i))

' (w1(i)︸ ︷︷ ︸
physical phenomenom

·
unknown gain and offset︷ ︸︸ ︷

h1,j) + h0,j

î Matrix form (if each of the m sensor senses all the scene)
x(1, 1) · · · x(1,m)

...
...

x(n, 1) · · · x(n,m)


︸ ︷︷ ︸

X

'


1 w1(1)
...

...

1 w1(n)


︸ ︷︷ ︸

W

·

[
h0,1 h0,2 · · · h0,m

h1,1 h1,2 · · · h1,m

]
︸ ︷︷ ︸

H

In practice, irregular sampling: Q ◦X ' Q ◦ (W ·H) with

Q(i, j) ,

{
0 if x(i, j) is not available,

ρj otherwise,

where ρj is a weight coefficient associated with Sensor j
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Assumptions & Problem Formalism (2)

X, W , and H are nonnegative (air quality application)

A known reference

î ∀i = 1, . . . , n, x(i,m) = w1(i) (i.e., h1,m = 1, h0,m = 0)

î Blind calibration revisited as an informed nonnegative matrix factorization problem

Q ◦


x(1, 1) · · · x(1,m− 1) w1(1)

x(2, 1) · · · x(2,m− 1) w1(2)
...

...
...

x(n, 1) · · · x(n,m− 1) w1(n)


︸ ︷︷ ︸

X

' Q ◦




1 w1(1)

1 w1(2)
...

...

1 w1(n)


︸ ︷︷ ︸

W

·

[
h0,1 h0,2 · · · h0,m−1 0

h1,1 h1,2 · · · h1,m−1 1

]
︸ ︷︷ ︸

H


X W H

' ·

W = ΦW +∆W

H = ΦH +∆H

Calibration⇐⇒ Estimating H
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Extension to p heterogeneous sensors (1)

Cross-sensitive sensors
Sensor readings may depend on other concentrations

I NO2 wrt O3

I O3 wrt NO2

New calibration model (Maag et al. 2016, 2017)
I for Sensor k (k ∈ {1, . . . , p}):

xk(i, j) ' h0,j + w1(i) · h1,j + w2(i) · h2,j + . . .+ wp(i) · hp,j

Temperature

& humidity

Temperature

& humidity

PM sensorPM sensor

COCO NO2NO2

O3O3
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Extension to p heterogeneous sensors (2)

X1

'

W

·

H1

X2

'

W

·

H2
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W
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H
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Extension to p heterogeneous sensors (2)

X

'

W

·

H

W = ΦW +∆W

H = ΦH +∆H

Similar problem as before (but with larger matrices)
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A simple extension to T Scenes

Original approach by Dorffer et al. limited to a single scene

We now consider a time series {X1, . . . , XT } of observed scenes
I Calibration models remain (multi-)linear if considered on daily to weekly basis (Arfire et

al., 2015)
I Sensor drift is usually not visible on such a short duration
î For each Xi, we may consider a similar problem as before with a common matrix H

∀i = 1, . . . T, Qi ◦Xi ≈ Qi ◦ (Wi ·H), (1)
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A simple extension to T Scenes
X1

'

W1

·

H

X2

'

W2

·

H
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A simple extension to T Scenes

Q ◦X ≈ Q ◦ (W ·H). (2)
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Part II: Solving in-situ calibration with fast informed NMF techniques

Random Projections

Compress Weighted NMF

Fastening Weighted NMF

affine response
x = h0 + h1 · w1

Sensor model

structure W

reference data

informs W et H

Informing WNMF

Fast Informed Weighted NMF

1 Dorffer et al.’s IN-Cal

2 Fast IN-Cal (F-IN-Cal) (Vu than et al.,

2021)

3 Randomized F-IN-Cal (RF-IN-Cal)

(Yahaya, 2021)
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Proposed calibration methods (1/2)

All the above mobile calibration problems aim to solve:

{W̃ , H̃} = arg min
W,H≥0

1

2
· ||Q ◦ (X −W ·H)||2F ,

s.t. W = ΦW +∆W

H = ΦH +∆H

Proposed techniques:
1 IN-Cal: Infomed Nmf-based mobile sensor Calibration1

I WNMF with multiplicative updates to update ∆W and ∆H only
I

H ← ΦH +∆H ◦
[
WT · (Q ◦ (X −W · ΦH)+)

WT · (Q ◦ (W ·∆H))

]
î Slow!

1Details in Dorffer et al., IEEE TSIPN, 2018.
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Proposed calibration methods (2/2)

2 Fast IN-Cal2 (F-IN-Cal): uses an EM framework and applies a Nesterov gradient
descent to update ∆W and ∆H

!!! Nesterov within EM much faster than a direct incorporation of the weights in the
gradient expression (Dorffer et al., 2017)

I E-step: Estimate the unknown entries of X using the last estimates of W and H – see
(Zhang et al., 2006) for details
î Xcomp = Q ◦X + (1−Q) ◦ (W ·H)

I M-step: Update ∆W and ∆H from Xcomp using Nesterov gradient

3 Randomized F-IN-Cal3 (RF-IN-Cal): combines F-IN-Cal with Compressive
(W)NMF (Tepper & Sapiro, 2016, Yahaya et al., 2019)

I X is large and low-rank (typically rank 2 to 4)
I At each E-step, we can derive compressed versions of Xcomp (compression on the left

and right side using structured random projections)

6 Extra CPU time in E-step wrt F-IN-Cal
4 Updates in M-step much faster than with F-IN-Cal

2Details in Vu than, Puigt, FY, Delmaire, Roussel, Proc. ICASSP 2021
3Details in FY, Ph.D. thesis, Nov. 2021
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Simulations

We generate theoretical factor matrices W and H, then we calculate

Xtheo ≈W ·H

The physical phenomena in the wk columns of W are generated as mixtures of

Gaussians with realistic concentrations

Calibration parameters randomly chosen according to a manufacturer data sheet

Observed data in X randomly chosen

Each mobile sensor has at most one rendez-vous with a reference sensor
I Complex scenario which can’t be processed by most SotA techniques
î We can only compare our proposed methods with IN-Cal
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A few results

We investigated the influence of several parameters (scene size, number of mobile

sensors and of references, missing valeur proportion, rendezvous proportion, etc)

We here just show the calibration accuracy (RMSE) versus CPU time (s)
I 15 experiments in Matlab with the same initialization for each method
I Enveloppe + median performance

We fix several parameters and observe the performance below
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Conclusion and Perspectives

Mobile sensor calibration revisited as an informed NMF problem

We extended previous work to the case of heterogeneous sensors and to multiple

scenes

We proposed accelerated WNMF methods using an EM framework

The proposed methods are shown to be fast and well-suited for the considered

problem

A few perspectives:
I As the present method is time independent, we could extend the calibration function to

the case of single/multiple variables with time.
I so far we do sampling of an area with square cells, in future one could imagine

irregularly shaped locations.
I in future we could apply the proposed methods to real mobile sensor data.
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+ Code: https://github.com/faroya/Faster-than-Fast-NeNMF
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