Fast informed nonnegative matrix factorization for mobile sensor calibration

Farouk Yahaya¹ Matthieu Puigt¹ Olivier Vu thanh² Gilles Delmaire¹ Gilles Roussel¹

 1 University of Littoral Côte d'Opale, LISIC, Calais, France ² University of Mons, Mons, Belgium

December 7th, 2021

Work partially funded by the Région Hauts-de-France and ULCO Research Pole MTE. Experiments performed using the CALCULCO computing platform supported by SCoSI/ULCO.

4 0 8

4 B F 4 B

Context

- centered on environmental monitoring
- Air pollution remains an issue $\Rightarrow \approx 400.000$ premature deaths per year in EU
- Need to monitor air quality
- **!!!** Local effects not sensed and hard to model with a sparsely distributed sensor network
	- **Tremendous development of miniaturized sensors**
- Allow a much denser deployment than authoritative sensing stations
- ➮ Some local effects become observable
- **!!!** But **sensor drift** is an issue

 Ω

The why of sensor calibration

- Observed phenomenon <a> voltage
- \bullet Voltage \circ Physical value?
	- \blacktriangleright Sensor calibration cannot be performed in lab
	- ➮ Data-driven approaches (a.k.a. *in situ* calibration techniques)
	- \blacktriangleright Presence of reference data

4 D F

 Ω

The how of sensor calibration

- Many existing methods (see, e.g., Maag *et al.* 2019, Delaine *et al.* 2020)
	- \blacktriangleright network topology
		- \star Mobile vs fixed sensors
		- \star Single sensor vs multiple sensors
	- \blacktriangleright calibration model
		- \star linear vs nonlinear
		- \star single vs multiple latent variables
	- \blacktriangleright calibration strategy
		- \star Macro vs Micro-calibration, etc.

- Combine micro-calibration and macro-calibration
	- ➮ Highlighted as a promosing idea in (Maag *et al.*, 2019)
- Revisit mobile sensor calibration as an informed matrix factorization problem
	-
	-
	-
	- ✖ Limited to the calibration of a single sensor in sensing devices covering a small area

The how of sensor calibration

- Many existing methods (see, e.g., Maag *et al.* 2019, Delaine *et al.* 2020)
	- \blacktriangleright network topology
		- \star Mobile vs fixed sensors
		- \star Single sensor vs multiple sensors
	- \blacktriangleright calibration model
		- \star linear vs nonlinear
		- \star single vs multiple latent variables
	- \blacktriangleright calibration strategy
		- \star Macro vs Micro-calibration, etc.

Dorffer *et al.*, 2015–2018: An original strategy

- **Combine micro-calibration and macro-calibration**
	- ➮ Highlighted as a promosing idea in (Maag *et al.*, 2019)
- Revisit mobile sensor calibration as an informed matrix factorization problem
	- ✔ Well-suited for much less dense networks (much less rendezvous needed)
	- \vee Linear and nonlinear calibration models
	- \vee Joint sensor calibration and physical phenomenon map
	- ✖ Limited to the calibration of a single sensor in sensing devices covering a small area over a short period

The Big Picture

Fastening Weighted NMF

 2990

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ○君

Part I: Revisiting in-situ calibration as an informed (semi-)NMF problem

- **1** Calibration of homogeneous sensors
- 2 Extension to p Heterogeneous sensors
- \bullet A simple extension to T Scenes

4 0 8

Definitions

- A rendezvous is a temporal and spatial vicinity between two sensors (Saukh *et al.*, 2013).
- A scene S is a discretized area observed during a time interval $[t, t + \Delta t)$. A spatial pixel has a size lower than Δd , where Δt and Δd define the vicinity of the rendezvous (Dorffer *et al.*, 2018).

Assumptions & Problem Formalism (1)

• Sensor response (calibration function $H(.)$ of Sensor j)

• In practice, irregular sampling: $Q \circ X \simeq Q \circ (W \cdot H)$ with

$$
Q(i,j) \triangleq \begin{cases} 0 & \text{if } x(i,j) \text{ is not available,} \\ \rho_j & \text{otherwise,} \end{cases}
$$

where ρ_i is a weight coefficient as[so](#page-7-0)ciated with Sensor j_{s+1} j_{s+1} and $s+1$ and $s+2$

Assumptions & Problem Formalism (2)

- \bullet X, W, and H are nonnegative (air quality application)
- **A** known reference
- $\blacktriangleright \forall i = 1, \ldots, n, \quad x(i, m) = w_1(i)$ (i.e., $h_{1,m} = 1, h_{0,m} = 0$)
- \odot Blind calibration revisited as an informed nonnegative matrix factorization problem

$$
Q \circ \begin{bmatrix} x(1,1) & \cdots & x(1,m-1) & w_1(1) \\ x(2,1) & \cdots & x(2,m-1) & w_1(2) \\ \vdots & \vdots & & \vdots \\ x(n,1) & \cdots & x(n,m-1) & w_1(n) \end{bmatrix} \simeq Q \circ \begin{bmatrix} 1 & w_1(1) \\ 1 & w_1(2) \\ \vdots & & \vdots \\ 1 & w_1(n) \end{bmatrix} \cdot \begin{bmatrix} h_{0,1} & h_{0,2} & \cdots & h_{0,m-1} & 0 \\ h_{1,1} & h_{1,2} & \cdots & h_{1,m-1} & 1 \end{bmatrix}
$$

イロメ イ母メ イヨメ イヨメ

Extension to p heterogeneous sensors (1)

Cross-sensitive sensors

- Sensor readings may depend on other concentrations
	- \triangleright NO₂ wrt O₃
	- \triangleright O₃ wrt NO₂
- New calibration model (Maag *et al.* 2016, 2017)
	- for Sensor k $(k \in \{1, \ldots, p\})$:

 $x_k(i, j) \simeq h_{0,j} + w_1(i) \cdot h_{1,j} + w_2(i) \cdot h_{2,j} + \ldots + w_p(i) \cdot h_{p,j}$

∢ ロ ▶ ィ 何

化重 网络重 网

Extension to p heterogeneous sensors (2)

メロトメ 伊 トメ ミトメ ミト

·

·

E F. Yahaya *et al.* 2008 12:00

 299

Extension to p heterogeneous sensors (2)

·

メロトメ 伊 トメ ミトメ ミト

 299

Extension to p heterogeneous sensors (2)

$$
W = \Phi_{\rm W} + \Delta_{\rm W}
$$

$$
H = \Phi_{\rm H} + \Delta_{\rm H}
$$

Similar problem as before (but with larger matrices)

4 ロト 4 旬

Э×

 $2Q$

A simple extension to T Scenes

- Original approach by Dorffer *et al.* limited to a single scene
- We now consider a time series $\{X_1, \ldots, X_T\}$ of observed scenes
	- ► Calibration models remain (multi-)linear if considered on daily to weekly basis (Arfire *et al.*, 2015)
	- \triangleright Sensor drift is usually not visible on such a short duration
	- \Rightarrow For each X_i , we may consider a similar problem as before with a **common matrix** H

$$
\forall i = 1, \dots T, \quad Q_i \circ X_i \approx Q_i \circ (W_i \cdot H), \tag{1}
$$

◆ ロ ▶ → 何

 QQ

化重新分重率

A simple extension to T Scenes

 \simeq

メロトメ 伊 トメ ミトメ ミト

·

·

 299

A simple extension to T Scenes

$$
Q \circ X \approx Q \circ (W \cdot H). \tag{2}
$$

メロトメ 倒 トメ ミトメ ミト

 299

Part II: Solving in-situ calibration with fast informed NMF techniques

1 Dorffer *et al.*'s IN-Cal

4 D.K.

- ² Fast IN-Cal (F-IN-Cal) (Vu than *et al.*, 2021)
- ³ Randomized F-IN-Cal (RF-IN-Cal) (Yahaya, 2021)

Proposed calibration methods (1/2)

All the above mobile calibration problems aim to solve:

$$
\{\tilde{W}, \tilde{H}\} = \arg\min_{W, H \ge 0} \frac{1}{2} \cdot ||Q \circ (X - W \cdot H)||_{\mathcal{F}}^2,
$$

s.t.
$$
W = \Phi_W + \Delta_W
$$

$$
H = \Phi_H + \Delta_H
$$

Proposed techniques:

- **1 IN-Cal: Infomed Nmf-based mobile sensor Calibration¹**
	- ► WNMF with multiplicative updates to update $\Delta_{\mathbf{W}}$ and $\Delta_{\mathbf{H}}$ only

$$
H \leftarrow \Phi_H + \Delta_H \circ \left[\frac{W^T \cdot (Q \circ (X - W \cdot \Phi_H)^+)}{W^T \cdot (Q \circ (W \cdot \Delta_H))} \right]
$$

 \circ Slow!

I

¹Details in Dorffer *et al.*, IEEE TSIPN, 2018.

 Ω

Proposed calibration methods (2/2)

- **2** Fast IN-Cal² (F-IN-Cal): uses an **EM framework** and applies a Nesterov gradient descent to update $\Delta_{\mathbf{W}}$ and $\Delta_{\mathbf{H}}$
	- !!! Nesterov within EM much faster than a direct incorporation of the weights in the gradient expression (Dorffer *et al.*, 2017)
	- E-step: Estimate the unknown entries of X using the last estimates of W and H see (Zhang *et al.*, 2006) for details
		- $\Rightarrow X^{\text{comp}} = Q \circ X + (\mathbb{1} Q) \circ (W \cdot H)$
	- ► M-step: Update $\Delta_{\mathbf{W}}$ and $\Delta_{\mathbf{H}}$ from X^{comp} using Nesterov gradient
- **3** Randomized F-IN-Cal³ (RF-IN-Cal): combines F-IN-Cal with Compressive
	- \blacktriangleright X is large and low-rank (typically rank 2 to 4)
	- At each E-step, we can derive compressed versions of X^{comp} (compression on the left and right side using **structured random projections**)
		- ✖ Extra CPU time in E-step wrt F-IN-Cal
		- ✔ Updates in M-step **much faster** than with F-IN-Cal

²Details in Vu than, Puigt, **FY**, Delmaire, Roussel, Proc. ICASSP 2021

³Details in **FY**, Ph.D. thesis, Nov. 2021

 QQ

イロメ イ母メ イヨメ イヨメーヨ

Proposed calibration methods (2/2)

- **2** Fast IN-Cal² (F-IN-Cal): uses an **EM framework** and applies a Nesterov gradient descent to update $\Delta_{\mathbf{W}}$ and $\Delta_{\mathbf{H}}$
	- !!! Nesterov within EM much faster than a direct incorporation of the weights in the gradient expression (Dorffer *et al.*, 2017)
	- E-step: Estimate the unknown entries of X using the last estimates of W and H see (Zhang *et al.*, 2006) for details

 $\Rightarrow X^{\text{comp}} = Q \circ X + (\mathbb{1} - Q) \circ (W \cdot H)$

- ► M-step: Update $\Delta_{\mathbf{W}}$ and $\Delta_{\mathbf{H}}$ from X^{comp} using Nesterov gradient
- **3** Randomized F-IN-Cal³ (RF-IN-Cal): combines F-IN-Cal with Compressive (W)NMF (Tepper & Sapiro, 2016, Yahaya *et al.*, 2019)
	- \blacktriangleright X is large and low-rank (typically rank 2 to 4)
	- At each E-step, we can derive compressed versions of X^{comp} (compression on the left and right side using **structured random projections**)
		- ✖ Extra CPU time in E-step wrt F-IN-Cal
		- ✔ Updates in M-step **much faster** than with F-IN-Cal

 QQ

²Details in Vu than, Puigt, **FY**, Delmaire, Roussel, Proc. ICASSP 2021

³Details in **FY**, Ph.D. thesis, Nov. 2021

Simulations

- \bullet We generate theoretical factor matrices W and H, then we calculate $X_{theo} \approx W \cdot H$
- The physical phenomena in the \underline{w}_k columns of W are generated as mixtures of Gaussians with realistic concentrations

- Calibration parameters randomly chosen according to a manufacturer data sheet
- \bullet Observed data in X randomly chosen
- Each mobile sensor has **at most** one rendez-vous with a reference sensor
	- \triangleright Complex scenario which can't be processed by most SotA techniques
	- \heartsuit We can only compare our proposed methods with IN-Cal

(□) (f)

 Ω

A few results

- We investigated the influence of several parameters (scene size, number of mobile sensors and of references, missing valeur proportion, rendezvous proportion, etc)
- We here just show the calibration accuracy (RMSE) versus CPU time (s)
	- \triangleright 15 experiments in Matlab with the same initialization for each method
	- \blacktriangleright Enveloppe + median performance
- We fix several parameters and observe the performance below

 Ω

Conclusion and Perspectives

- Mobile sensor calibration revisited as an informed NMF problem
- We extended previous work to the case of heterogeneous sensors and to multiple scenes
- We proposed accelerated WNMF methods using an EM framework
- The proposed methods are shown to be fast and well-suited for the considered problem
- A few perspectives:
	- \triangleright As the present method is time independent, we could extend the calibration function to the case of single/multiple variables with time.
	- \triangleright so far we do sampling of an area with square cells, in future one could imagine irregularly shaped locations.
	- \triangleright in future we could apply the proposed methods to real mobile sensor data.

 QQ

 $\mathcal{A} \equiv \mathcal{B} \times \mathcal{A} \equiv \mathcal{B}$

References

- Arfire, A., Marjovi, A., & Martinoli, A. (2015, November). Model-based rendezvous calibration of mobile sensor networks for monitoring air quality. In 2015 IEEE SENSORS (pp. 1-4). IEEE.
- Delaine, F., Lebental, B., & Rivano, H. (2019). In situ calibration algorithms for environmental sensor networks: A review. IEEE Sensors Journal, 19(15), 5968-5978.
- Dorffer, C., Puigt, M., Delmaire, G., & Roussel, G. (2017, February). Fast nonnegative matrix factorization and completion using Nesterov iterations. In Proc. LVA-ICA (pp. 26-35). Springer, Cham.
- Dorffer, C., Puigt, M., Delmaire, G., & Roussel, G. (2018). Informed nonnegative matrix factorization methods for mobile sensor network calibration. IEEE Transactions on Signal and Information Processing over Networks, 4(4), 667-682.
- Maag, B., Zhou, Z., Saukh, O., & Thiele, L. (2017). SCAN: Multi-hop calibration for mobile sensor arrays. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 1(2), 1-21.
- Maag, B., Zhou, Z., & Thiele, L. (2018). A survey on sensor calibration in air pollution monitoring deployments. IEEE Internet of Things Journal, 5(6), 4857-4870.
- Saukh, O., Hasenfratz, D., Walser, C., & Thiele, L. (2014). On rendezvous in mobile sensing networks. In Real-World Wireless Sensor Networks (pp. 29-42). Springer, Cham.
- Tepper, M., & Sapiro, G. (2016). Compressed nonnegative matrix factorization is fast and accurate. IEEE Transactions on Signal Processing, 64(9), 2269-2283.
- Vu thanh, O., Puigt, M., Yahaya, F., Delmaire, G., & Roussel, G. (2021, June). In situ calibration of cross-sensitive sensors in mobile sensor arrays using fast informed non-negative matrix factorization. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 3515-3519). IEEE.
- Yahaya, F., Puigt, M., Delmaire, G., & Roussel, G. (2019, September). How to apply random projections to nonnegative matrix factorization with missing entries?. In 2019 27th European Signal Processing Conference (EUSIPCO) (pp. 1-5).
- Yahaya, F (2021, November). Compressive informed (semi-)non-negative matrix factorization methods for incomplete and large-scale data, with application to mobile crowd-sensing data. PhD thesis, ULCO.
- Zhang, S., Wang, W., Ford, J., & Makedon, F. (2006, April). Learning from incomplete ratings using non-negative matrix factorization. In Proceedings of the 2006 SIAM international conference on data mining (pp. 549-553). Society for Industrial and Applied Mathematics. $A \cup B \cup A \cup B \cup A \cup B \cup A \cup B \cup B$ QQ

Merci de votre attention

Discover our work

¹ **FY** *et al.*, in Proc. ICASSP 2021

<https://dx.doi.org/10.1109/ICASSP39728.2021.9413496>

² Vu thanh, Puigt, **FY**, Delmaire, Roussel, in Proc. ICASSP 2021

<https://dx.doi.org/10.1109/ICASSP39728.2021.9414742>

³ **FY** *et al.*, in Proc. iTWIST 2020

<https://hal.archives-ouvertes.fr/hal-02931454>

⁴ **FY** *et al.*, in Proc. EUSIPCO 2019

<https://hal.archives-ouvertes.fr/hal-02151521>

⁵ **FY** *et al.*, in Proc. GRETSI 2019

<https://hal.archives-ouvertes.fr/hal-02145705>

⁶ **FY** *et al.*, in Proc. iTWIST 2018

<https://hal.archives-ouvertes.fr/hal-01859713>

+ Code: <https://github.com/faroya/Faster-than-Fast-NeNMF>

 QQ

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁