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Context

@ centered on environmental monitoring
@ Air pollution remains an issue = =~ 400.000 premature deaths per year in EU
@ Need to monitor air quality

! Local effects not sensed and hard to model with a sparsely distributed sensor
network

@ Tremendous development of miniaturized sensors

@ Allow a much denser deployment than authoritative sensing stations
© Some local effects become observable

1l But sensor drift is an issue
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The why of sensor calibration

@ Observed phenomenon = voltage
@ \oltage = Physical value?
> Sensor calibration cannot be
performed in lab
= Data-driven approaches (a.k.a. in situ
calibration techniques)
> Presence of reference data
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The how of sensor calibration

@ Many existing methods (see, e.g., Maag et al. 2019, Delaine et al. 2020)
» network topology
* Mobile vs fixed sensors
* Single sensor vs multiple sensors
» calibration model
* linear vs nonlinear
* single vs multiple latent variables
> calibration strategy
* Macro vs Micro-calibration, etc
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@ Many existing methods (see, e.g., Maag et al. 2019, Delaine et al. 2020)
» network topology
* Mobile vs fixed sensors
* Single sensor vs multiple sensors
» calibration model
* linear vs nonlinear
* single vs multiple latent variables
> calibration strategy
* Macro vs Micro-calibration, etc

Dorffer et al., 2015—2018: An original strategy
@ Combine micro-calibration and macro-calibration
= Highlighted as a promosing idea in (Maag et al., 2019)
@ Revisit mobile sensor calibration as an informed matrix factorization problem
v/ Well-suited for much less dense networks (much less rendezvous needed)
v Linear and nonlinear calibration models
v Joint sensor calibration and physical phenomenon map

# Limited to the calibration of a single sensor in sensing devices covering a small area
over a short period
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The Big Picture
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Part I: Revisiting in-situ calibration as an informed (semi-)NMF problem

Informing WNMF

reference data

atme) @ Calibration of homogeneous sensors

@ Extension to p Heterogeneous sensors

© A simple extension to T' Scenes
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Definitions

@ A rendezvous is a temporal and spatial vicinity between two sensors (Saukh et al.,

2013).

@ Ascene S is a discretized area observed during a time interval [¢, ¢ + At). A

spatial pixel has a size lower than Ad, where At and Ad define the vicinity of the

rendezvous (Dorffer et al., 2018).

@ Sensor 1
. Sensor 2

@ Sensor3
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Assumptions & Problem Formalism (1)
@ Sensor response (calibration function H(.) of Sensor j)
x(i,j) = Hi(w(i))

——
sensor-output voltage

unknown gain and offset
(wi(d)  ~hig) + hoy

N——
physical phenomenom

R

© Matrix form (if each of the m sensor senses all the scene)

z(1,1) -+ z(1,m) 1 wi(l)
N ' hoi  ho2 - hom
a hig hia o him
z(n,1) -+ x(n,m) 1 wi(n)
X w
@ In practice, irregular sampling: Q o X ~ Q o (W - H) with
. 0 ifz(i,7) is not available,
Q,j) = { :
p;j otherwise,

where p; is a weight coefficient associated with Sensor j
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Assumptions & Problem Formalism (2)

@ X, W, and H are nonnegative (air quality application)

@ A known reference
x(i,m) = wi(i) (i.e., hi,m = 1, ho.m = 0)

> Vi=1,...,n,

= Blind calibration revisited as an informed nonnegative matrix factorization problem

z(1,1) - x(l,m—1) wi(l) 1 wi(1)
Q o ‘T’(27 1) e ‘T’(27 m — l) ’11)1(2) ~ Q o 1 w1(2) ) }L071 hU,Q hom-1 0
: : : : : hii hi2 him-1 1
z(n, 1) z(n,m—1) wi(n) 1 wi(n) H
X W
X W H W = B+ A
H=%u+ An

Calibration <= Estimating H
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Extension to p heterogeneous sensors (1)

Cross-sensitive sensors
@ Sensor readings may depend on other concentrations

NO3 wrt O3
O3 wrt NO2

@ New calibration model (Maag et al. 2016, 2017)
for Sensor k (k € {1,...,p}):

2k (3,9) = hoj +wi(d) - haj +w2(i) - haj+ ..+ wp(d) - hy,j

(", 1.

S

Temperature
& humidity
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Extension to p heterogeneous sensors (2)
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Extension to p heterogeneous sensors (2)

X w
- l |
W = dw + Aw

H =%+ An

Similar problem as before (but with larger matrices)
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A simple extension to T Scenes

@ Original approach by Dorffer et al. limited to a single scene
@ We now consider a time series {X,..., X7} of observed scenes

» Calibration models remain (multi-)linear if considered on daily to weekly basis (Arfire et
al., 2015)

» Sensor drift is usually not visible on such a short duration

= For each X;, we may consider a similar problem as before with a common matrix H

\V/i=1,...T, QioXizQio(Wi-H), (1)
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A simple extension to T Scenes
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A simple extension to T Scenes
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Part Il: Solving in-situ calibration with fast informed NMF techniques

Fastening Weighted NMF

Informing WNMF

reference data

at

&
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@ Dorffer et al.’s IN-Cal

@ Fast IN-Cal (F-IN-Cal) (Vu than et al.,
2021)

© Randomized F-IN-Cal (RF-IN-Cal)
(Yahaya, 2021)

7/12/2021 13/20



Proposed calibration methods (1/2)

All the above mobile calibration problems aim to solve:
-~ ~ . 1 2
{W,H} = arg moin o - Qo (X —W - H)||%,

st. W=ow+ Aw
H=9%ou+ A

Proposed techniques:
@ IN-Cal: Infomed Nmf-based mobile sensor Calibration’
» WNMF with multiplicative updates to update Ay and Ay only

" WT . (Qo (X — W - 1)%)
W (Qo (W - n)

H < 911 4+ Apr o

= Slow!

"Details in Dorffer et al., IEEE TSIPN, 2018.
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Proposed calibration methods (2/2)

@ Fast IN-Cal® (F-IN-Cal): uses an EM framework and applies a Nesterov gradient
descent to update Aw and A
Il Nesterov within EM much faster than a direct incorporation of the weights in the
gradient expression (Dorffer et al., 2017)
» E-step: Estimate the unknown entries of X using the last estimates of W and H — see
(Zhang et al., 2006) for details
D XOMP =QoX+(1-Q)o(W-H)
> M-step: Update Ay and Ay from X°MP using Nesterov gradient

2Details in Vu than, Puigt, FY, Delmaire, Roussel, Proc. ICASSP 2021
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@ Fast IN-Cal? (F-IN-Cal): uses an EM framework and applies a Nesterov gradient
descent to update Aw and A
IIl' Nesterov within EM much faster than a direct incorporation of the weights in the
gradient expression (Dorffer et al., 2017)
» E-step: Estimate the unknown entries of X using the last estimates of W and H — see
(Zhang et al., 2006) for details
XM — Qo X +(1—-Q)o(W-H)
> M-step: Update Ay and Ay from X¢MP ysing Nesterov gradient
© Randomized F-IN-Cal® (RF-IN-Cal): combines F-IN-Cal with Compressive
(W)NMF (Tepper & Sapiro, 2016, Yahaya et al., 2019)
» X is large and low-rank (typically rank 2 to 4)

> At each E-step, we can derive compressed versions of X™P (compression on the left
and right side using structured random projections)

® Extra CPU time in E-step wrt F-IN-Cal
v Updates in M-step much faster than with F-IN-Cal

2Details in Vu than, Puigt, FY, Delmaire, Roussel, Proc. ICASSP 2021
3Details in FY, Ph.D. thesis, Nov. 2021
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Simulations

@ We generate theoretical factor matrices W and H, then we calculate
Xtheo ~W-H

@ The physical phenomena in the w, columns of W are generated as mixtures of
Gaussians with realistic concentrations
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@ Calibration parameters randomly chosen according to a manufacturer data sheet

@ Observed data in X randomly chosen
@ Each mobile sensor has at most one rendez-vous with a reference sensor

» Complex scenario which can’t be processed by most SotA techniques
= We can only compare our proposed methods with IN-Cal
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A few results

@ We investigated the influence of several parameters (scene size, number of mobile
sensors and of references, missing valeur proportion, rendezvous proportion, etc)
@ We here just show the calibration accuracy (RMSE) versus CPU time (s)
» 15 experiments in Matlab with the same initialization for each method
» Enveloppe + median performance

@ We fix several parameters and observe the performance below
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Conclusion and Perspectives

@ Mobile sensor calibration revisited as an informed NMF problem

@ We extended previous work to the case of heterogeneous sensors and to multiple
scenes

@ We proposed accelerated WNMF methods using an EM framework

@ The proposed methods are shown to be fast and well-suited for the considered
problem
@ A few perspectives:

> As the present method is time independent, we could extend the calibration function to
the case of single/multiple variables with time.

» so far we do sampling of an area with square cells, in future one could imagine
irregularly shaped locations.

> in future we could apply the proposed methods to real mobile sensor data.
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+ Code: https://github.com/faroya/Faster-than-Fast—-NeNMF
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